

COLLEGE OF ENGINEERING

Bridging Between Tables and Human Languages From Tables to Knowledge: Recent Advances in Table Understanding (Part IV)

Muhao Chen

Department of Computer Science / Information Sciences Institute University of Southern California

> Aug 2021 KDD Tutorials Recent Advances in Table Understanding

How Do Table Understanding Interface with Natural Language Understanding?

Table Understanding and NLU Are Related

2:39				Experimental
â googi	e.com 🖞	Searching for an		result table(s)
		entity at Google.		
Jupiter	:	7 8	Dataset CN15K NL27k	should be at the top of the list. When usin
Planet			Metrics linear exp. linear exp.	BEUrRE(rule+) model, the top 10 in all en
			TransE 0.601 0.591 0.722	are place, town, bed, school, city, home, h
Overview Atmosph	ere News Spac	cer	DistMult 0.689 0.677 0.911 0.897	capital, church, camp, which are general con
			ComplEx 0.723 0.712 0.921 0.913	Among the observed objects of the atLocation
			RotatE 0.715 0.703 0.901 0.887	icate, the entities that have the least coverag
and the second second			TuckER 0.736 0.724 0.877 0.870	Tunisia, Morocco, Algeria, Westminster, Vera
Telling and the second of			URGE 0.572 0.570 0.593 0.593	Buenos Aires, Emilia-Romagna, Tyrrhenian
2015	100		UKGE 0.769 0.768 0.933 0.929	Kuwait, Serbia. Those entities are very sp
		Text description	BEURRE 0.796 0.795 0.942 0.942	locations. This observation confirms that th
		Text description	UKGE(rule+) 0.789 0.788 0.955 0.956	volume effectively represents probabilistic s
			BEUrRE(rule+) 0.801 0.803 0.966 0.970	tics and captures specificity/granularity of con which we believe to be a reason for the perform
Jupiter is the fifth planet from	the Sun and the largest		Table 5: Mean nDCG for fact ranking. linear stands	improvement.
in the Solar System. It is a ga			for linear gain, and <i>exp.</i> stands for exponential gain.	improvement.
than two and a half times that				5
in the Solar System combine				Result discussions
one-thousandth the mass of	the Sun. Wikipedia		separate transforms for head and tail boxes, we	
Distance from Sun: 483.8 mi	lion mi		conduct an ablation study based on CN15k. The	
Orbital period: 12 years	1	Attributes in a	results for comparison are given in Table 4. First,	about Honda Motor Co. in Section 1, wh
			we resort to a new configuration of BEUrRE where	was mentioned that (Honda, competeswith, ota) should have a higher belief than (Honda,
Surface area: 23.71 billion m	2	compact table	we use smoothed boundaries for boxes as in (Li	peteswith, Chrysler). Following this intuition
Mass: 1.898 × 10^27 kg (31	7.8 M⊕)		et al., 2019) instead of Gumbel boxes. We refer to boxes of this kind as soft boxes. Under the uncon-	task focuses on ranking multiple candidate ta
Radius: 43,441 mi			strained setting, using soft boxes increases MSE	tities for a query $(h, r, \underline{?t})$ in terms of their
Moons: Europa, Ganymede,	lo Callisto Amalthea		by 0.0033 on CN15k (ca. 4% relative degrada-	dence.
Himalia, Adrastea, Valetudo,				
			Reading about experi	ments in a scientific pap

Tables and text: two views of information, complementary sources of knowledge

Natural Language Interfaces to Tabular Content

Connecting tables and NL lead to a flexible and user-friendly way of accessing tabular content.

Semantic retrieval of tables

Rank 🕈	Title 🕈	Sales 🗢	Platform(s) 🗢
1	Minecraft	200,000,000	Multi-platform
2	Grand Theft Auto V	135,000,000	Multi-platform
3	Tetris (EA)	100,000,000	Mobile
4	Wii Sports	82,900,000	Wii
5	PlayerUnknown's Battlegrounds	70,000,000	Multi-platform
6	Super Mario Bros.	48,240,000	Multi-platform
7	Pokémon Red / Green / Blue / Yellow	47,520,000	Multi-platform

A wii game by Nintendo.

CONSOLIDATED STATEMENTS OF	12 Months Ended			
OPERATIONS - USD (\$) \$ in Thousands	Jan. 31, 2020	Jan. 31, 2019	Jan. 31, 2018	
Income Statement [Abstract]				
Revenue	\$ 622,658	\$ 330,517	\$ 151,478	
Cost of revenue	115,396	61,001	30,780	
Gross profit	507,262	269,516	120,698	
Operating expenses:				
Research and development	67,079	33,014	15,733	
Sales and marketing	340,646	185,821	82,707	
General and administrative	86,841	44,514	27,091	
Total operating expenses	494,566	263,349	125,531	
Income (loss) from operations	12,696	6,167	(4,833)	
Interest income and other, net	13,666	2,182	1,315	
Total	26,362	8,349	(3,518)	
Provision for income taxes	1,057	765	304	
Net income (loss)	25,305	7,584	(3,822)	
Distributed earnings attributable to participating securities	0	0	(4,405)	
Undistributed earnings attributable to participating securities	(3,555)	(7,584)	0	
Net income (loss) attributable to common stockholders	\$ 21,750	\$ 0	\$ (8,227)	
Net income (loss) per share attributable to common stockholders:				
Basic (in dollars per share)	\$ 0.09	\$ 0.00	\$ (0.11)	
Diluted (in dollars per share)	\$ 0.09	\$ 0.00	\$ (0.11)	
Weighted-average shares used in computing net income (loss) per share attributable to common stockholders:				
Basic (in shares)	233,641,336	84,483,094	78,119,865	
Diluted (in shares)	254,298,014	116,005,681	78,119,865	

Table showing the growing revenue of Zoom.

Retrieving cell content

Generating summarizations for tables

|--|

Rank +	Title 🗢	Sales 🗢	Platform(s) +
1	Minecraft	200,000,000	Multi-platform
2	Grand Theft Auto V	135,000,000	Multi-platform
3	Tetris (EA)	100,000,000	Mobile
4	Wii Sports	82,900,000	Wii
5	PlayerUnknown's Battlegrounds	70,000,000	Multi-platform
6	Super Mario Bros.	48,240,000	Multi-platform
7	Pokémon Red / Green / Blue / Yellow	47,520,000	Multi-platform

• The best-selling video game of all time is Minecraft.

• The best-selling video game of all time is Tetris.

Tables as evidence for natural language claim verification

Year	City	Country	Nations
1896	Athens	Greece	14
1900	Paris	France	24
1904	St. Louis	USA	12
2004	Athens	Greece	201
2008	Beijing	China	204
2012	London	UK	204

- x_1 : "Greece held its last Summer Olympics in which year?" y_1 : {2004}
- x_2 : "In which city's the first time with at least 20 nations?" y_2 : {Paris}
- x_3 : "Which years have the most participating countries?" y_3 : {2008, 2012}
- x_4 : "How many events were in Athens, Greece?"
- y_4 : {2}

 \checkmark

Х

- x_5 : "How many more participants were there in 1900 than in the first year?"
- y_5 : {10}

Tables as reference for answering questions

Common Challenges for Connecting Tables and Natural Language

Handling heterogeneous structures

Lake	Area
Windermere	5.69 sq mi
Ullswater	3.86 sq mi
Derwent Water	2.06 sq mi

Country	United States	
State	California	
County	Los Angeles	
Region	South California	

	Right-handed	Left-handed
Males	43	9
Females	44	4
Totals	87	12

		То			
			Solid	Liquid	Gas
		Solid	Solid trans	Melting	Sublimation
	From	Liquid	Freezing	-	Boiling
		Gas	Deposition	Condensation	-

Gameloft SE is a French video game publisher based in Paris, founded in December 1999 by Ubisoft cofounder Michel Guillemot. The company operates 19 development studios worldwide, and publishes games with a special focus on the mobile games market.

~

GAMELOFT

Gameloft

Video game publisher

(a) Relational table

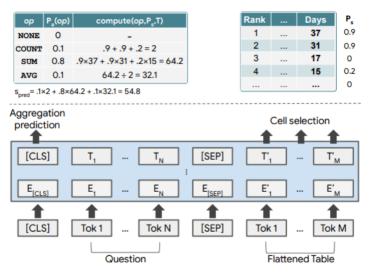
(b) Entity table

(c) Matrix table

(d) Nested table

Linear text vs. diverse table layout structures

Weak connections between tables and text


Capturing multi-granular content

Agenda

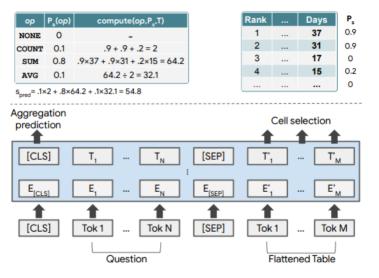
1. Representation Learning for Tables + Language

3. Table-assisted Natural Language Understanding

1	Minecraft	200,000,000	Multi-platform
2	Grand Theft Auto V	135,000,000	Multi-platform
3	Tetris (EA)	100,000,000	Mobile
4	Wii Sports	82,900,000	Wii
5	PlayerUnknown's Battlegrounds	70,000,000	Multi-platform
6	Super Mario Bros.	48,240,000	Multi-platform
7	Pokémon Red / Green / Blue / Yellow	47,520,000	Multi-platform
	3 4 5	Tetris (EA) Wil Sports PlayerUnknown's Battlegrounds Super Mario Bros.	2 Grand Theft Auto V 135,000,000 3 Tetris (EA) 100,000,000 4 Wil Sports 82,900,000 5 PlayerUnknown's Battlegrounds 70,000,000 6 Super Mario Bros. 48,240,000

2. Natural Language Interface for Tabular Content

Caption -{		Singapore Cup			
Attribute Year		Champions	Runners-up		
ſ	1996	Geylang United	Singapore Armed Forces		
<u>Cell</u> -	1997	Singapore Armed Forces	Woodlands Wellington		
	1998	Tanjong Pagar United	Sembawang Rangers		
☐ Text - Singapore Armed forces was the champion of Singapore Cup in 1997.					


4. Open Research Directions

Agenda

1. Representation Learning for Tables + Language

3. Table-assisted Natural Language Understanding

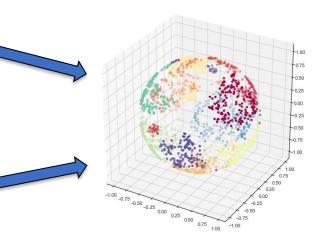
2. Natural Language Interface for Tabular Content

Caption -{		Singapore Cup						
<u>Attribute</u>	Year	Champions	Runners-up					
ſ	1996	Geylang United	Singapore Armed Forces					
<u>Cell</u> -	1997	Singapore Armed Forces	Woodlands Wellington					
	1998	Tanjong Pagar United	Sembawang Rangers					
$\overline{\mathbf{v}}$								
Text -	Singap	ore Armed forces was the cham	pion of Singapore Cup in 1997.					

4. Open Research Directions

Representation Learning for Tables and Text

The backbone of NL interfaces to tables and table-assisted NLU


Goal

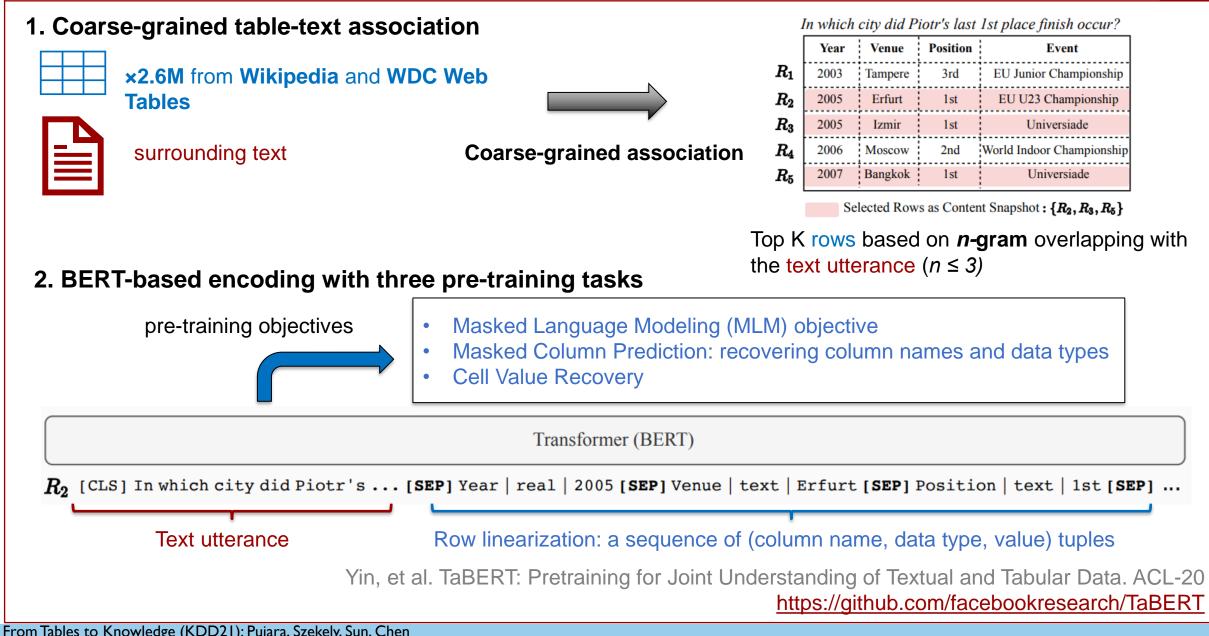
	Rank +	Title 🗢	Sales 🕈	Platform(s) +
	1	Minecraft	200,000,000	Multi-platform
	2	Grand Theft Auto V	135,000,000	Multi-platform
ables 3	3	Tetris (EA)	100,000,000	Mobile
ables	4	Wii Sports	82,900,000	Wii
	5	PlayerUnknown's Battlegrounds	70,000,000	Multi-platform
	6	Super Mario Bros.	48,240,000	Multi-platform
	7	Pokémon Red / Green / Blue / Yellow	47,520,000	Multi-platform

Natural

Language

should be at the top of the list. When using the BEUTRE(rule+) model, the top 10 in all entities are place, town, bed, school, city, home, house, capital, church, camp, which are general concepts. Among the observed objects of the atLocation predicate, the entities that have the least coverage are Tunisia, Morocco, Algeria, Westminster, Veracruz, Buenos Aires, Emilia-Romagna, Tyrrhenian sea, Kuwait, Serbia. Those entities are very specific locations. This observation confirms that the box volume effectively represents probabilistic semantics and captures specificity/granularity of concepts, which we believe to be a reason for the performance improvement.

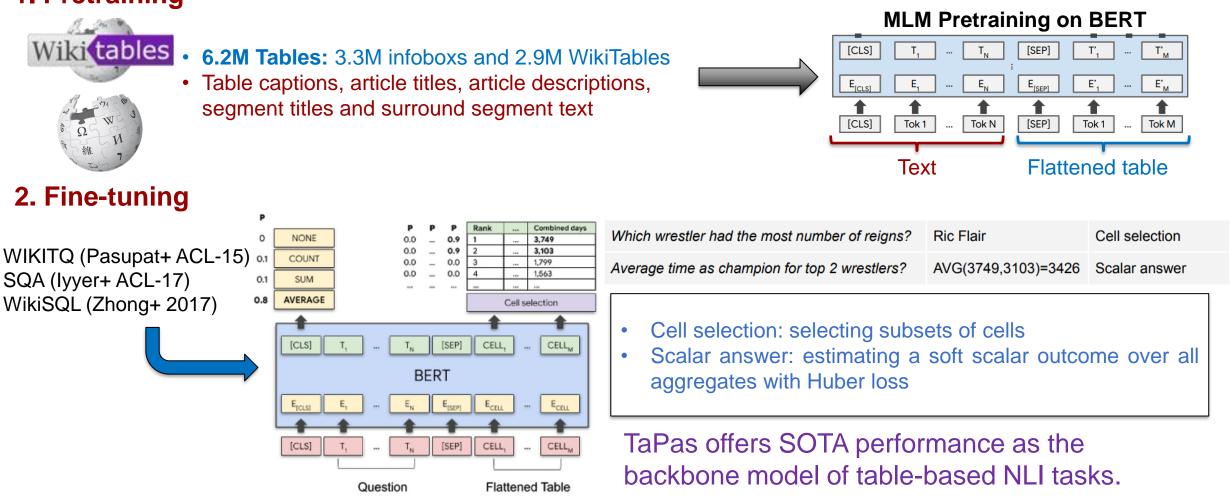
Joint (latent) representation


Challenges

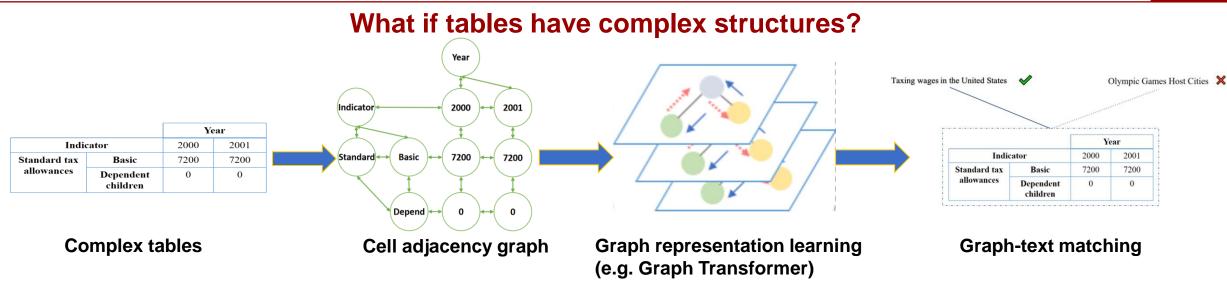
- Precise table-text alignment rarely exists.
- Tabular content is presented in different granularities (cells, rows, cols, etc.)
- Linear text vs. structured tables

Relevance between NL and tabular content

TaBERT: Joint Language Modeling for Tables and Text



TaPas: Weakly-supervised Table Question Answering


1. Pretraining

Herzig, et al. TaPas: Weakly Supervised Table Parsing via Pre-training. ACL-20 Eisenschlos, et al. Understanding tables with intermediate pre-training. Findings of EMNLP-20 <u>https://github.com/google-research/tapas</u>

Graph Representation Learning for Complex Tables

Comparing to language models

Pros:

- Can handle arbitrary table layout structures
- Can easily summarize multi-granular contents (with global nodes)

Con:

• Weaker table-text association (semantic shifts between feature spaces of the LM and the graph encoder)

Zhang, et al. A Graph Representation of Semi-structured Data for Web Question Answering. COLING-20 Wang, et al. Retrieving Complex Tables with Multi-Granular Graph Representation Learning. SIGIR-21

Agenda

1. Representation Learning for Tables + Language

						Rank		Days	Ps
NONE	0		-			1		37	0.9
COUNT	0.1	.9+	9 + .2 = 2			2		31	0.9
SUM	0.8	.9×37 + .9×	31 + .2×15 = 6	4.2		3		17	0
AVG	0.1	64.2	÷ 2 = 32.1			4		15	0.2
s = 1)	x2 + 8x6	4.2 + .1×32.1 =	54.8						0
opred									
Aggreg predic							Cell se	election	
T								1 1	È
[CLS	S]	T ₁	T _N		[SEP]	T'1		T'	м
E	S]	E,	E _N		E _[SEP]	E',		E'	м
		1	1		1			1	
[CLS	S]	Tok 1	Tok N	I	[SEP]	Tok	1	Tok	M
		Qu	estion			F	latten	ed Table	

3. Table-assisted Natural Language Understanding

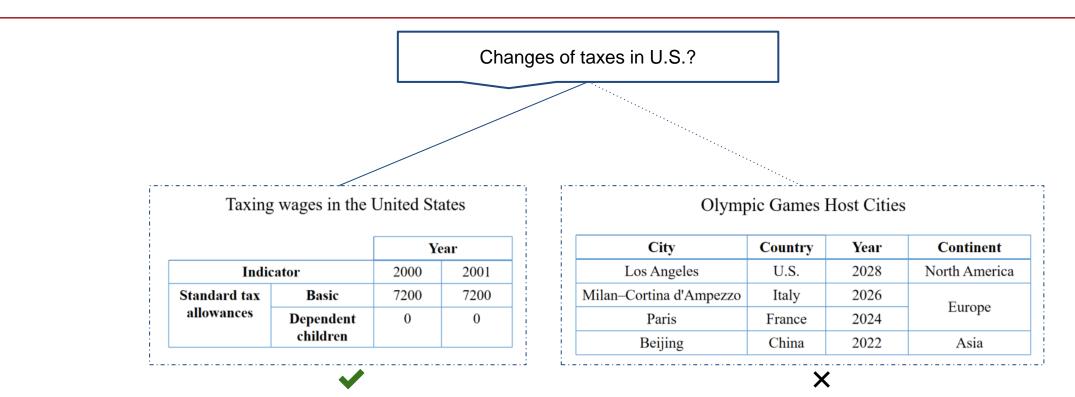
2. Natural Language Interface for Tabular Content

Caption {		Сир			
<u>Attribute</u>	Year	Champions	Runners-up		
ſ	1996	Geylang United	Singapore Armed Forces		
<u>Cell</u>	1997	Singapore Armed Forces	Woodlands Wellington		
	1998	Tanjong Pagar United	Sembawang Rangers		
- ſ	Cia	$\overline{\mathbf{Q}}$	·		
Text -	Singap	ore Armed forces was the cham	pion of Singapore Cup in 1997.		

4. Open Research Directions

Natural Language Interfaces for Tabular Content

1. Using natural language to retrieve the tabular content



2.Describing tabular content with natural language

Caption -{		Singapore Cup						
<u>Attribute</u>	Year	Champions	Runners-up					
ſ	1996	Geylang United	Singapore Armed Forces					
<u>Cell</u> -	1997	Singapore Armed Forces	Woodlands Wellington					
	1998	Tanjong Pagar United	Sembawang Rangers					
- -		<u>ب</u>						
Text -	Singap	ore Armed forces was the cham	pion of Singapore Cup in 1997.					

Semantic Table Retrieval

Input:

- A natural language query
- A set of **tables**, where each table consists of:
 - table body (headers, data cells, etc.)
 - context (captions, footnotes, etc.)

Output:

• A ranked list of **semantically relevant** tables

Semantic Table Retrieval

Earlier methods

Lexical matching

Content Selector

context fields

- BM25: Robertson, et al. Okapi at TREC-3. NIST special publication 500225 (1995)
- Multi-field doc ranking: Pimplikar and Sarawagi. 2012. Answering table queries on the web using column keywords. PVLDB-12
- Lexical Table Retrieval: Zhang and Balog: Ad hoc table retrieval using semantic similarity. WWW-18

Feature engineering / statistical machine learning

Layer

relevance

score

- Linear regression: Cafarella et al. Data integration for the relational web. PVLDB-09
- Tab-Lasso: Bhagavatula, et al. Methods for exploring and mining tables on wikipedia. KDD-13
- MDF & GRU-matching: Sun, et al. Content-based table retrieval for web queries. Neurocomputing 349 (2019), 183–189

Recent language models offer more precise and generalizable retrieval BERT4TR BERT4TR

- Using BERT to match between queries and linearized tables
 - Chen, et al. Table Search Using a Deep Contextualized Language Model. SIGIR-20

TaBERT offers even better performance

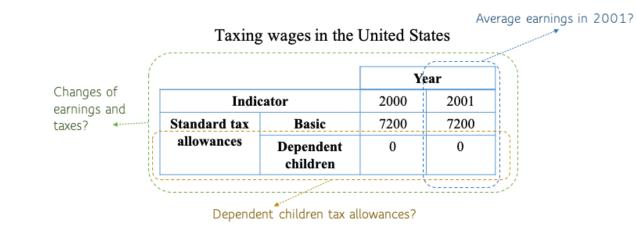
From Tables to Knowledge (KDD21): Pujara, Szekely, Sun, Chen

querv

More challenges: Complex tables and diverse query intents

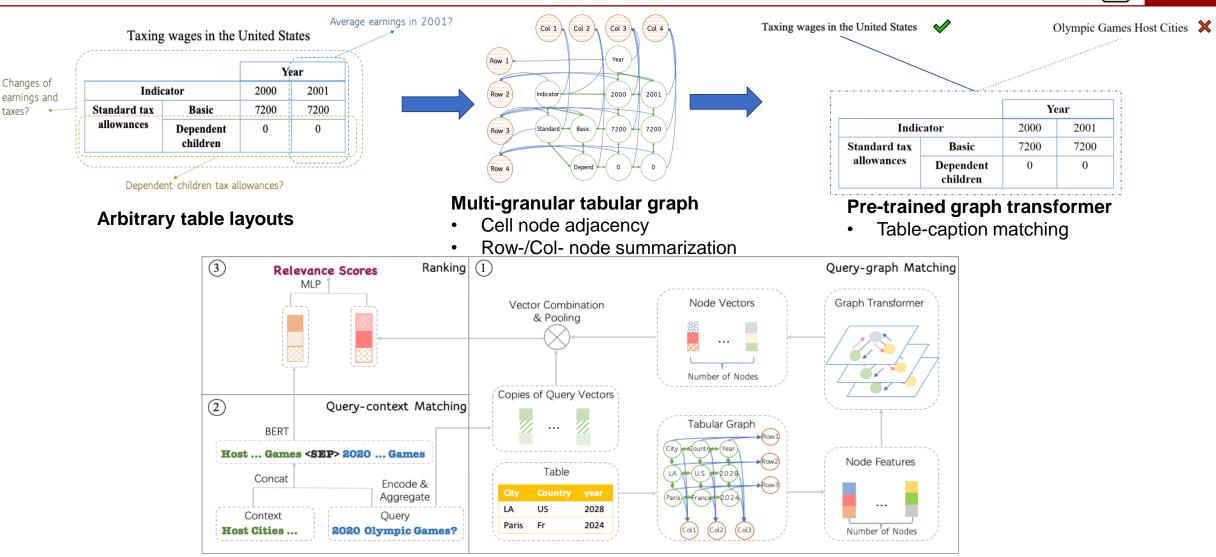
Various layout structures

Lake	Area	Country	United States			Right-handed	Left-handed]				То	
Windermere	5.69 sq mi	State	California		Males	43	9	1			Solid	Liquid	Gas
Ullswater	3.86 sq mi	County	Los Angeles	1	Females	44	4		F			Melting	Sublimation
Derwent Water	2.06 sq mi	Region	South California	1	Totals	87	12		From	Gas	Freezing Deposition	- Condensation	Boiling -


(a) Relational table

(b) Entity table

(c) Matrix table


(d) Nested table

Diverse query intents

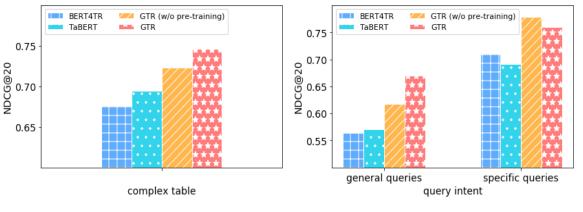
Wang, et al. Retrieving Complex Tables with Multi-Granular Graph Representation Learning. SIGIR, 2021

Semantic Table Retrieval

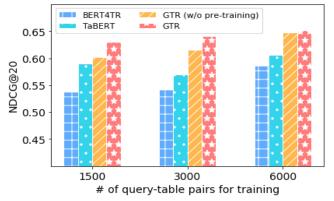
Model Architecture

Wang, et al. Retrieving Complex Tables with Multi-Granular Graph Representation Learning. SIGIR, 2021 From Tables to Knowledge (KDD21): Pujara, Szekely, Sun, Chen

Pre-trained Graph Transformer (GTR)


Results on WikiTables

Method	NDCG@5	NDCG@10	NDCG@15	NDCG@20	MAP
BM25	0.3196	0.3377	0.3732	0.4045	0.4260
WebTable	0.2980	0.3150	0.3486	0.3922	-
SDR	0.4573	0.4841	0.5195	0.5534	-
MDR	0.5021	0.5116	0.5451	0.5761	-
Tab-Lasso	0.5161	0.5018	0.5330	0.5481	-
LTR	0.5910	0.5712	0.5858	0.6041	0.5615
TaBERT	0.5926	0.6108	0.6451	0.6668	0.6326
BERT4TR	0.6052	0.6171	0.6386	0.6689	0.6191
GTR (w/o pre-training)	0.6554	0.6747	0.6978	0.7211	0.6665
GTR	0.6671	0.6856	0.7065	0.7272	0.6859


Graph Transformer vs. Linear Language Models

- >8% relative improvement on all metrics
- better than BERT-based methods even w/o pre-training

Better generalization to **complex tables** and **diverse query intents**

Better cross-dataset generalization

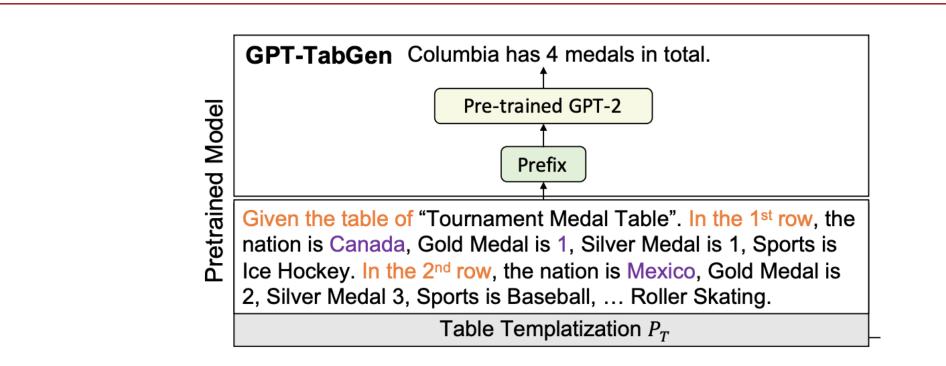
Wang, et al. Retrieving Complex Tables with Multi-Granular Graph Representation Learning. SIGIR, 2021

Table-to-text Generation

Generating NL descriptions to summarize tabular content

- WIKIBIO dataset [Lebret+ EMNLP-16]: surface-level NLG.
- Logical NLG dataset [Chen+ ACL-20]

The emerging challenge: describing logical comparison


Nation	Gold Medal	Silver Medal	Bronze Medal	Sports				
Canada	3	1	2	Ice Hockey				
Mexico	2	3	1	Baseball				
Colombia	1	3	0	Roller Skating				
	Surface-level Generation							
		-	als in the tourna and <mark>1 bronze</mark> me					
	Logical Natural Language Generation							
	Sentence: Canada obtained 1 more gold medal than Mexico. Sentence: Canada obtained the most gold medals in the game.							

Medal Table from Tournament

Lebret, et al. Neural Text Generation from Structured Data with Application to the Biography Domain. EMNLP-16 Chen et al. Logical Natural Language Generation from Open-Domain Tables. ACL-20

Table-to-text Generation

GPT-TabGen [Chen+ ACL-20]

- 1. Generating a per-row (intermediate) description based on a <col name, value> template.
- 2. Summarize the intermediate description: fulfilling a summary template with GPT-2

Existing models can only achieve 20% logical correctness (according to Chen+ ACL-20)!

Lebret, et al. Neural Text Generation from Structured Data with Application to the Biography Domain. EMNLP-16 Chen et al. Logical Natural Language Generation from Open-Domain Tables. ACL-20

Summarizing facts only based on several highlighted cells

• The ToTTo dataset: 121,000 training examples; 7,500 examples each for development and test

Year	Team	0veral1	coaching reco Conference		Bow1/playoffs	Coaches#	AP°
N	orth Carolina Tar	Heels (At	lantic Coast				
1967	North Carolina	2 - 8	2 - 5	7th			
1968	North Carolina	3 - 7	1 - 6	8th			
1969	North Carolina	5 - 5	3 - 3	T - 3rd			
1970	North Carolina	8 - 4	5 - 2	T - 2nd	L Peach		
1971	North Carolina	9 - 3	6 - 0	1st	L Gator	18	
1972	North Carolina	11 - 1	6 - 0	1st	W Sun	14	1
1973	North Carolina	4 - 7	1 - 5	6th			
1974	North Carolina	7 - 5	4 - 2	T - 2nd	L Sun		
1975	North Carolina	3 - 7 - 1	1 - 4 - 1	6th			
1976	North Carolina	9 - 3	4 - 1	2nd	L Peach		
1977	North Carolina	8 - 3 - 1	5 - 0 - 1	1st	L Liberty	14	1
North Carolina:	69 - 53 - 2	38 - 28 - 2					
Virgin	ia Tech Gobblers	/ Hokies (N	CAA Division	I-A Indepen	dent) (1978 - 198	6)	
1978	Virginia Tech	4 - 7					
1979	Virginia Tech	5 - 6					
1980	Virginia Tech	8 - 4			L Peach		
1981	Virginia Tech	7 - 4					
1982	Virginia Tech	7 - 4					
1983	Virginia Tech	9 - 2					
1984	Virginia Tech	8 - 4			L Independence		
1985	Virginia Tech	6 - 5					
1986	Virginia Tech	10 - 2 - 1			W Peach		2
Virginia Tech:	64 - 38 - 1						
Wa	ake Forest Demon	Deacons (At	lantic Coast	Conference)	(1987 - 1992)		
1987	Wake Forest	7 - 4	4 - 3	T - 3rd			
1988	Wake Forest	6 - 4 - 1	4 - 3	T - 4th			
1989	Wake Forest	2 - 8 - 1	1 - 6	7th			
1990	Wake Forest	3 - 8	0 - 7	8th			
1991	Wake Forest	3 - 8	1 - 6	T - 7th			
1992	Wake Forest	8 - 4	4 - 4	T - 4th	W Independence	25	2
Wake Forest:	29 - 36 - 2	14 - 29					
Total:	163 - 126 - 5						
	2	C	11-11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	le en chemi	onship game bert	la la	

The challenge: overgeneration (missing descriptions) and under generation (unexpected descriptions).

•GOLD: Bill Dooley served as the head coach at the North Carolina (1967–1977), Virginia tech (1978–1986) and Wake Forest (1987–1992).

•BART(sub-table): Bill Dooley served as the head coach at North Carolina from 1967 to 1974 and at Virginia Tech from 1974 to 1992.

•**BART(full-table):** Bill Dooley served as the head coach at North Carolina from 1967 to 1989 and at Virginia Tech from 1990 to 2005, compiling a career coaching record of 201–151–10.

An open question: graph representation learning as prior?

Parikh,, et al. ToTTo: A Controlled Table-To-Text Generation Dataset. EMNLP-20

Agenda

1. Representation Learning for Tables + Language

						Rank		Days	Ps
NONE	0		-			1		37	0.9
COUNT	0.1	.9+	9 +	.2 = 2		2		31	0.9
SUM	0.8	.9×37 + .9	×31 +	.2×15 = 64.2		3		17	0
AVG	0.1	64.	2÷2	= 32.1		4		15	0.2
s= .10	×2 + .8×6	4.2 + .1×32.1	= 54.	8					o
-pred									
Aggreg predic						(Cell se	election	
	tion							<u>† 1</u>	<u> </u>
[CL	S]	T ₁		T _N	[SEP]	 		T	м
E	s]	E ₁		E _N	E _[SEP]	E',		E'	м
1		1		1	1	1		1	
[CLS	S]	Tok 1		Tok N	[SEP]	Tok	1	Tok	M
		Q	uesti	on		L	latten	ed Table	

3. Table-assisted Natural Language Understanding

82,900,000 Wii

70,000,000 Multi-platform

48,240,000 Multi-platform

47,520,000 Multi-platform

2. Natural Language Interface for Tabular Content

Caption -{		Singapore Cup							
Attribute-	Year	Champions	Runners-up						
Γ	1996	Geylang United	Singapore Armed Forces						
<u>Cell</u> -	1997	Singapore Armed Forces	Woodlands Wellington						
	1998	Tanjong Pagar United	Sembawang Rangers						
Text -	Singap	ore Armed forces was the cham	pion of Singapore Cup in 1997.						

4. Open Research Directions

From Tables to Knowledge (KDD21): Pujara, Szekely, Sun, Chen

4

5

6

Wii Sports

Super Mario Bros.

PlayerUnknown's Battlegrounds

Pokémon Red / Green / Blue / Yellow

Table-assisted Natural Language Understanding

 \checkmark

X

Rank 🕈	Title 🕈	Sales 🗢	Platform(s) +
1	Minecraft	200,000,000	Multi-platform
2	Grand Theft Auto V	135,000,000	Multi-platform
3	Tetris (EA)	100,000,000	Mobile
4	Wii Sports	82,900,000	Wii
5	PlayerUnknown's Battlegrounds	70,000,000	Multi-platform
6	Super Mario Bros.	48,240,000	Multi-platform
7	Pokémon Red / Green / Blue / Yellow	47,520,000	Multi-platform

 The best-selling video game of all time is Minecraft.

 The best-selling video game of all time is Tetris.

Year	City	Country	Nations
1896	Athens	Greece	14
1900	Paris	France	24
1904	St. Louis	USA	12
2004	Athens	Greece	201
2008	Beijing	China	204
2012	London	UK	204

x = Greece held its last Summer Olympics in which year?

y = 2004

1. Web tables as trustworthy evidence for verifying claims

2. Web tables as clean references for answering questions

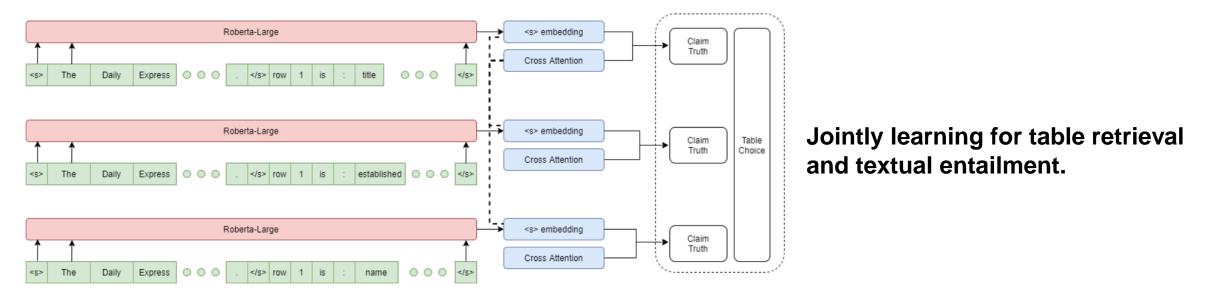
The TabFact dataset: 16k Wikipedia tables as evidence for verifying 118k human annotated statements

United States House of Representatives Elections, 1972

District	Incumbent	Party	Result		Candidates	
California 3	John E. Moss	democratic	re-elected		John E. Moss (d) 69.9% John Rakus (r) 30.1%	
California 5	Phillip Burton	democratic	re-elected		Phillip Burton (d) 81.8% Edlo E. Powell (r) 18.2%	
California 8	George Paul Miller	democratic	lost renomina	ation democratic hold	Pete Stark (d) 52.9% Lew M. Warden , Jr. (r) 47.1%	
California 14	Jerome R. Waldie	republican	re-elected		Jerome R. Waldie (d) 77.6% Floyd E. Sims (r) 22.4%	
California 15	John J. Mcfall	republican	re-elected		John J. Mcfall (d) unopposed	
	Entailed Sta	tement		Refuted Statement		
 John E. Moss and Phillip Burton are both re-elected in the house of representative election. John J. Mcfall is unopposed during the re-election. There are three different incumbents from democratic. 				of representative e 2. John J. Mcfall failed	to be re-elected though being unopposed. Idates in total, two of them are democrats and	

- 1. Table retrieval: finding evidence table(s)
- 2. NLI: textual entailment using the table as premise and the statement as hypothesis

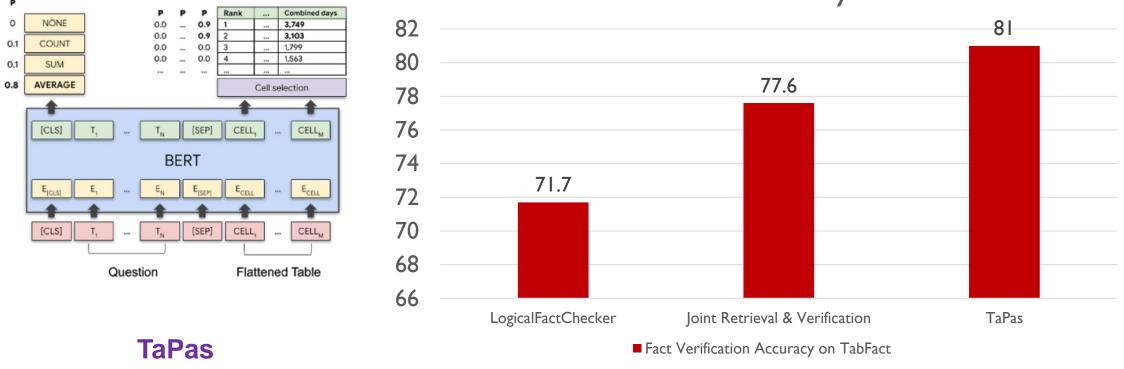
Chen et al. TabFact: A Large-scale Dataset for Table-based Fact Verification. ICLR-20


Logical program based approach: learn to parse NL statements into logical programs, and execute the program on tables

Year	Tournaments Played	Avg. Score	Scoring Rank
2007	22	72.46	81
2008	29	71.65	22
2009	25	71.90	34
2010	18	73.42	92
2011	11	74.42	125

Program eq { max { all_rows ; tournaments played } ; hop { filter_eq { all_rows ; year ; 2008 } ; tournaments played } } = True

Zhong et al. LogicalFactChecker: Leveraging Logical Operations for Fact Checking with Graph Module Network. ACL-20 Yang et al. Program Enhanced Fact Verification with Verbalization and Graph Attention Network. EMNLP-20



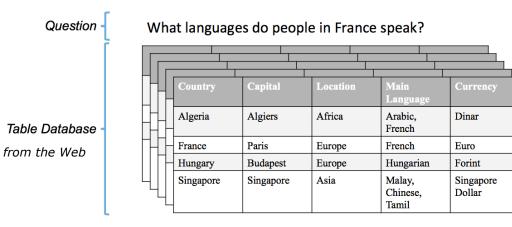
Schlichtkrull, et al. Joint Verification and Reranking for Open Fact Checking Over Tables. 2020

Table-based Fact Verification

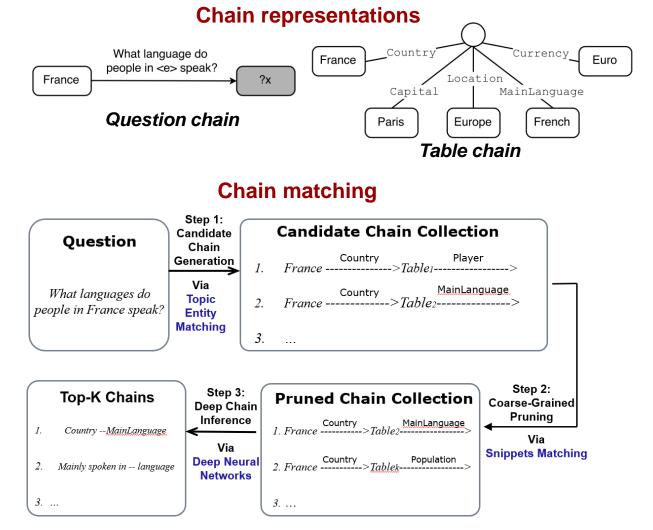
Textual entailment seems to be the right direction. Table-assisted language modeling (TaPas) provides a strong solution.

Fact Verification Accuracy on TabFact

Herzig, et al. TaPas: Weakly Supervised Table Parsing via Pre-training. ACL-20


Table QA

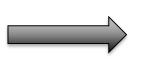
Searching for table cells that answer natural language questions


• TabMCQ [Jauhar+, ACL-16] and WikiTableQuestions [Pasupat and Liang, EMNLP-15]

Given:

Goal: to find a table cell containing answers.

Sun, et al. Table Cell Search for Question Answering. WWW-16


Table QA

TaBERT [ACL-20] +Weakly-supervised Semantic Parser (MAPO [Liang+ NIPS-18])

1. Coarse-grained table-text association

×2.6M from	Wikipedia	and	WDC	Web
Tables				

surrounding text

Coarse-grained association

	In which city did Piotr's last 1st place finish occur?										
	Year	Venue	Position	Event							
R ₁	2003	Tampere	3rd	EU Junior Championship							
$\mathbf{R_2}$	2005	Erfurt	1st	EU U23 Championship							
R ₃	2005	Izmir	1st	Universiade							
R_4	2006	Moscow	2nd	World Indoor Championship							
R_5	2007	Bangkok	1st	Universiade							

Selected Rows as Content Snapshot : {**R**₂, **R**₃, **R**₅}

Top K rows based on *n*-gram overlapping with the text utterance ($n \le 3$)

2. TaBERT as encoder for parsing questions into symbolic forms

In which city did Piotr's last 1st place finish occur? Table.contains(column=Position, value=1st) .argmax(order_by=Year) .hop(column=Venue) # Get rows whose 'Position' field contains '1st' # Get the row which has the largest 'Year' field # Select the value of 'Venue' in the result row

51.8 testing accuracy on WIKITQ, one of the SOTA's

HybridQA

		national multi-sp	ipíada) and commonly knov ort event	vn	Yan Naing Soe (born 31 January 19 competed at the 2016 Summer Olyu He was the flag bearer for Mya	mpics in the men 's 100 kg event ,
Name	Year	Season	Flag bearer			
XXXI	2016	Summer	Yan Naing Soe		Zaw Win Thet (born 1 March 1991	
ххх	2012	Summer	Zaw Win Thet		Ayeyarwady Division , Myanmar) is	a Burmese runner who
XXIX	2008	Summer	Phone Myint Tayzar	1 A H H 7	Myint Tayzar Phone (Burmese : မြင် a sprint canoer from Myanmar who	
XXVIII	<u>2004</u>	Summer	Hla Win U		a sprint canocr norn wyannar who	
XXVII	2000	Summer	Maung Maung Nge	Acres	Win Maung (born 12 May 1949) is	a Burmese footballer . He
ХХ	<u>1972</u>	Summer	Win Maung	A CR H	competed in the men 's tournamen	
Q: In w	which year did the	judoka bearer	participate in the Olympic	opening ce	remony?	A: 2016
Q: Wh	ich event does th	e does the XXX	I Olympic flag bearer par	ticipate in?		A: men's 100 kg event
Q: Wh	ere does the Burr	messe jodoka p	articipate in the Olympic	opening cere	emony as a flag bearer?	A: Rio
Q: For	the Olympic ever	nt happening af	ter 2014, what session do	bes the Flag	bearer participate?	A: Parade of Nations
Q: For	the XXXI and XX	X Olympic eve	nt, which has an older flag	g bearer?		A: XXXI
Q: Wh	en does the oldes	st flag Burmese	bearer participate in the	Olympic cer	emony?	A: 1972

Answering questions based on complementary information in tables and documents:

- 13K Wiki Tables
- Hyperlinked paragraphs

Need to combine both TableQA and Doc QA

Chen, et al. HybridQA: A Dataset of Multi-Hop Question Answering over Tabular and Textual Data. Findings of EMNLP-20

Split	Train	Dev	Test	Total
In-Passage	35,215	2,025	20,45	39,285 (56.4%)
In-Table	26,803	1,349	1,346	29,498 (42.3%)
Computed	664	92	72	828 (1.1%)
Total	62,682	3,466	3,463	69,611

Agenda

1. Representation Learning for Tables + Language

						Rank		Days	P _s
NONE	0		_			1		37	0.9
COUNT	0.1	.9+	9 +	.2 = 2		2		31	0.9
SUM	0.8	.9×37 + .9	×31 +	.2×15 = 64.2		3		17	0
AVG	0.1	64.	2÷2	= 32.1		4		15	0.2
									0
Spred=.D	×2 + .8×0	54.2 + .1×32.1	= 54.	.0					
Aggreg predic						+	Cells	election	•
[CL	S]	T ₁		T _N	[SEP]	Τ',		T	м
E	sj	E,		E _N	E _[SEP]	E',		E'	M
	S]	Tok 1		Tok N	SEP]	Tok	1	Tok	M
		Q	uesti	on		L	latter	ed Table	

3. Table-assisted Natural Language Understanding

2. Natural Language Interface for Tabular Content

Caption -{	Singapore Cup					
<u>Attribute</u>	Year	Champions	Runners-up			
ſ	1996	Geylang United	Singapore Armed Forces			
<u>Cell</u> -	1997	Singapore Armed Forces	Woodlands Wellington			
	1998	Tanjong Pagar United	Sembawang Rangers			
		$\overline{\mathbf{Q}}$				
Text -	Singap	ore Armed forces was the cham	pion of Singapore Cup in 1997.			

4. Open Research Directions

Language Grounding to Tables

Grounding text spans (in scientific literature) to corresponding tabular content

Table 4: Ablation study of EVA based on DBP15k (FR→EN).

model	H@I	H@10	MRR	
w/o structure	$.391 \pm .004$.514 ±.003	.423 ±.004	
w/o image	$.749 \pm .002$	$.929 \pm .002$.817 ±.001	
w/o attribute	$.750 \pm .003$	$.927 \pm .001$.813 ±.003	
w/o relation	$.763 \pm .006$	$.928 \pm .003$	$.823 \pm .004$	
W/O IL	.715 ± .003	.936 + .002	.795 1.004	
w/o Csls	.786 ±.005	$.928 \pm .001$.838 ±.003	
full model	.793 ±.003	.942 ±.002	.847 ±.004	

Scientific Leaderboard Construction

Scientific Publication

Table

A Joint Model for Entity Analysis: Coreference, Typing, and Linking

Abstract: We present a joint model of three core tasks in the entity analysis stack: coreference resolution (within-document clustering), named entity recognition (coarse semantic typing), and entity linking (matching to Wikipedia entities). Our model is formally a structured conditional random field. Unary factors encode local features from strong baselines for each task. We then add binary and ternary factors to capture cross-task interactions, such as the constraint that coreferent mentions have the same semantic type. On the ACE 2005 and OntoNotes datasets, we achieve state-of-the- art results for all three tasks. Moreover, joint modeling improves performance on each task over strong independent baselines.

	Dev							Te	st			
	MUC	B^3	CEAF _e	Avg.	NER	Link	MUC	B^3	CEAFe	Avg.	NER	Link
		74.81	71.84	74.87	83.04	73.07	81.03	74.89	72.56	76.16	82.35	74.71
JOINT	79.41	75.56	73.34	76.10	85.94	75.69	81.41	74.70	72.93	76.35	85.60	76.78
Δ	+1.46	+0.75	+1.50	+1.23	+2.90	+2.62	+0.42	-0.19	+0.37	+0.19	+3.25	+2.07

Leaderboard Annotations

1: Results on the ACE 2005 dev and test sets for the INDEP. (task-specific factors only)	Task	Dataset	Evaluation Metric	Best Result
	Named Entity Recognition	ACE 2005 (Test)	Accuracy	85.60
	Entity Linking	ACE 2005 (Test)	Accuracy	76.78
	Coreference Resolution	ACE 2005 (Test)	Avg. F1	76.35

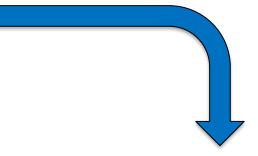
Hou, et al. Identification of Tasks, Datasets, Evaluation Metrics, and Numeric Scores for Scientific Leaderboards Construction. ACL-19

4.3 Ablation Study

We report an ablation study of **EVA** in Tab. 4 using DBP15k (FR \rightarrow EN). As shown, IL brings ca. 8% absolute improvement. This gap is smaller than what has been reported previously (Sun et al. 2018). This is because the extra visual supervision in our method already allows the model to capture fairly good alignment in the first 500 epochs, leaving smaller room for further improvement from IL. CSLS gives minor but consistent improvement to all metrics during infer-

How to automatically query Web corpora, verify what are in the table and add what are not there?

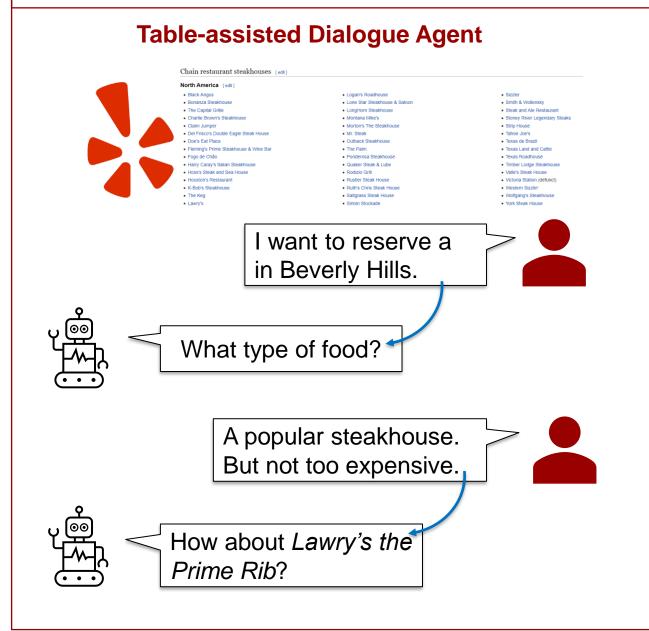
Rank +	Title 🔶	Sales 🕈	Platform(s) 🕈
1	Minecraft	200,000,000	Multi-platform
2	Grand Theft Auto V	135,000,000	Multi-platform
3	Tetris (EA)	100,000,000	Mobile
4	Wii Sports	82,900,000	Wii
5	PlayerUnknown's Battlegrounds	70,000,000	Multi-platform
6	Super Mario Bros.	48,240,000	Multi-platform
7	Pokémon Red / Green / Blue / Yellow	47,520,000	Multi-platform


2. Cleaning: Open-domain QA + Claim verification

Web corpora

3. Expansion: Open-domain QA + Answer consolidation

1. Answer-agnostic question generation



How many sales does Minecraft have?

• What are popular Nintendo Switch games?

Tables and Dialogue Agents

Conversational Spreadsheet Editing

	Main rates (CC BY rate or all licences rate)			Main member rates (CC BY rate or all licences rate)			Licences offered		
Journal	GBP 🔻	USD 🔻	EUR 🔻	GBP 👻	USD 🔻	EUR 💌	CC BY 🔻	CC BY-NC 🔻	CC BY-NC-ND
Acta Biochimica et Biophysica Sinica	2090	3350	2720				x	x	x
Adaptation	2265	3312	2725				x		
Advances in Nutrition	4044	5500	4894	3309	4500	4004	x	x	
Aesthetic Surgery Journal	3177	4765	3875	2530	3800	3100	Available for fur	ded articles only	
Aesthetic Surgery Journal Open Forum	1838	2500	2188	1471	2000	1750	x		
African Affairs	2841	4261	3484				x		
Age and Ageing	2658	4202	3460				Available for fur	n x	x
Alcohol and Alcoholism	2791	4413	3634				x		
American Entomologist	2478	3717	3017	1983	2974	2413	x		
American Journal of Clinical Pathology	2690	4290	3219	1759	2812	2286	x		
American Journal of Epidemiology	2363	3833	3098				x	x	
American Journal of Health-System Pharma	2809	3820	3343	2478	3371	2949	x		
American Journal of Hypertension	2757	4136	3343				Available for fur	ided articles only	
American Journal of Legal History	2596	3894	3180				x		
American Law and Economics Review	2307	3460	2812				x		
American Literary History	2892	3955	3341				x		x
Analysis	2200	2992	2442				x	x	x
Apimal Frontiers	0	0	0				x		
Annals of Behavioral Medicine	2286	3809	2742	1829	3047	2195	x	x	

delete 6 rows from the beginning delete the left most two rows merge the cells from C1 to C3 create line charts using data from B2 through D20

	Main rates (CC BY rate or	all licences rate)	Chart Title
ournal 🔹	GBP	USD	▼ EUR		
cta Biochimica et Biophysica Sinica	209	0 33	350 27		
Adaptation	226	5 33	312 27	25 300	
Advances in Nutrition	404	4 55	500 48		
Aesthetic Surgery Journal	317	7 47	765 38	75 100	
esthetic Surgery Journal Open Forum	183	8 25	500 21	<mark>88</mark> '	
African Affairs	284	1 42	261 34	84	and the set of the set
Age and Ageing	265	8 42	202 34	<mark>60</mark>	المواكد المراجع المراجع المواكد المراجع المراجع المراجع المراجع
Alcohol and Alcoholism	279	1 44	13 36	<mark>34</mark> ړي	start and with with the second of and and and and mer and we
American Entomologist	247	8 37	717 30	17 È	har war har har har har har har har har har h
American Journal of Clinical Pathology	269	0 42	290 32	<mark>19</mark>	
American Journal of Epidemiology	236	3 38	333 30	<mark>98</mark>	Main rates (CC BY rate or all licences rate)
American Journal of Health-System Pharma	a <mark>. 280</mark>	9 38	320 33	<mark>43</mark>	2478 3371 2949 x
American Journal of Hypertension	275	7 41	136 33	<mark>43</mark>	Available for funded articles only
American Journal of Legal History	259	6 38	394 31	80	x
American Law and Economics Review	230	7 34	60 28	12	X
American Literary History	289	2 39	955 33	41	x
Analysis	220	0 29	92 24	42	x x

References

Yin, et al. TaBERT: Pretraining for Joint Understanding of Textual and Tabular Data. ACL-20 Herzig, et al. TaPas: Weakly Supervised Table Parsing via Pre-training. ACL-20 Eisenschlos, et al. Understanding tables with intermediate pre-training. Findings of EMNLP-20 Zhang, et al. A Graph Representation of Semi-structured Data for Web Question Answering. COLING-20 Wang, et al. Retrieving Complex Tables with Multi-Granular Graph Representation Learning. SIGIR-21 Chen, et al. Table Search Using a Deep Contextualized Language Model. SIGIR-20 Lebret, et al. Neural Text Generation from Structured Data with Application to the Biography Domain. EMNLP-16 Chen et al. Logical Natural Language Generation from Open-Domain Tables. ACL-20 Parikh,, et al. ToTTo: A Controlled Table-To-Text Generation Dataset. EMNLP-20 Chen et al. TabFact : A Large-scale Dataset for Table-based Fact Verification. ICLR-20 Schlichtkrull, et al. Joint Verification and Reranking for Open Fact Checking Over Tables. 2020 Zhong et al. LogicalFactChecker: Leveraging Logical Operations for Fact Checking with Graph Module Network. ACL-20 Yang et al. Program Enhanced Fact Verification with Verbalization and Graph Attention Network. EMNLP-20

Sun, et al. Table Cell Search for Question Answering. WWW-16

Chen, et al. HybridQA: A Dataset of Multi-Hop Question Answering over Tabular and Textual Data. Findings of EMNLP-20

lyyer, et al. Search-based neural structured learning for sequential question answering. ACL-17

Zhong, et al. Seq2sql: Generating structured queries from natural language using reinforcement learning. 2017

School of Engineering

THE OHIO STATE UNIVERSITY

COLLEGE OF ENGINEERING

Thank You